Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8729, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622264

RESUMO

Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-ß (TGF-ß1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Losartan , Piridonas , Humanos , Ratos , Animais , Losartan/farmacologia , Losartan/uso terapêutico , Bleomicina/toxicidade , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Antioxidantes/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Colágeno/farmacologia
2.
J Diabetes Metab Disord ; 22(2): 1355-1363, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37975118

RESUMO

Background: The liver and pancreas tissues play a central role in controlling glucose homeostasis. In patients with type I diabetes mellitus (T1DM), the function of these tissues is impaired. The positive effects of exercise have been shown in diabetic patients. To demonstrate the positive effects of exercise in T1DM, we examined the effects of moderate-intensity endurance training (MIET) on the liver enzymes and expression of MCT1 and GLUT4 genes. Methods: Male Wistar rats were allocated into 4 groups of control (C), training (T), diabetic control (DC), and diabetes + training (DT). The serum levels of liver enzymes such as alanine aminotransferase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were determined by ELIZA. MCT1 and GLUT4 mRNA expressions in the liver and pancreas tissues were evaluated through real-time qPCR after 10 weeks of training. Results: The mRNA levels of MCT1 and GLUT4 decreased in DC group and increased in DT group. T1DM led to weight loss, but the weight loss was less in the DT group. T1DM caused an increase in liver enzymes such as ALT, AST and ALP, whereas endurance training preserved enzymatic levels. Conclusion: These results suggested that MIET increases levels of MCT1 and GLUT4 liver and pancreas in the diabetic rats and improves liver function tests. Upregulation of MCT1 and GLUT4 can probably improve the function of liver and pancreas tissues and promote glucose homeostasis in T1DM.

3.
Iran J Basic Med Sci ; 26(9): 1001-1015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37605719

RESUMO

Pulmonary fibrosis (PF) is the end stage of severe lung diseases, in which the lung parenchyma is replaced by fibrous scar tissue. The result is a remarkable reduction in pulmonary compliance, which may lead to respiratory failure and even death. Idiopathic pulmonary fibrosis (IPF) is the most prevalent form of PF, with no reasonable etiology. However, some factors are believed to be behind the etiology of PF, including prolonged administration of several medications (e.g., bleomycin and amiodarone), environmental contaminant exposure (e.g., gases, asbestos, and silica), and certain systemic diseases (e.g., systemic lupus erythematosus). Despite significant developments in the diagnostic approach to PF in the last few years, efforts to find more effective treatments remain challenging. With their immunomodulatory, anti-inflammatory, and anti-fibrotic properties, stem cells may provide a promising approach for treating a broad spectrum of fibrotic conditions. However, they may lose their biological functions after long-term in vitro culture or exposure to harsh in vivo situations. To overcome these limitations, numerous modification techniques, such as genetic modification, preconditioning, and optimization of cultivation methods for stem cell therapy, have been adopted. Herein, we summarize the previous investigations that have been designed to assess the effects of stem cell preconditioning or genetic modification on the regenerative capacity of stem cells in PF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...